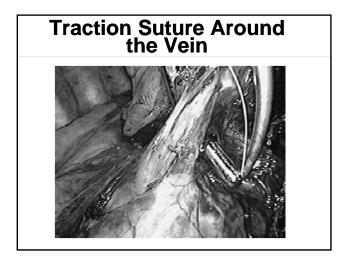
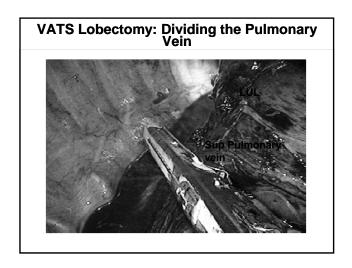
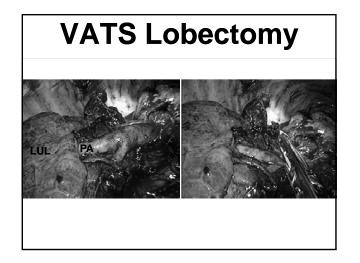
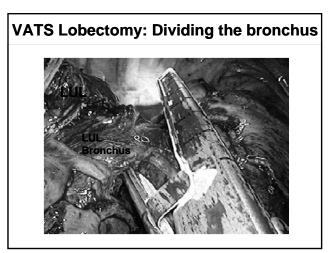

Robotic Thoracic Surgery


Patrick Ross, Jr., MD, PhD
Professor and Chief
Division of Thoracic Surgery
The Ohio State University Wexner Medical Center


Robotic Thoracic Surgery





Compelling Data for VATS

- Published series defining outcomes
- Comparative effectiveness studies
- Added value for minimally invasive surgery
 - ➤ More likely to complete adjuvant therapy
 - > Less immunologic impact
 - Improved short term outcomes with decreased length of stay and quicker recovery

Maximizing the benefit of minimally invasive surgery Mohiuddin and Swanson 2013 J Surg Oncol 108:315-319

- MIS is preferable in patients with significant comorbidities
 - Pulmonary impairment
 - Cardiac disease
 - Poor performance status
 - Advanced age
 - Recent or impending major operations
 - Immunosuppression
 - Rheumatologic/skeletal abnormalities

MIS

- Potential Benefits
 - Shorter hospital stay
 - Shorter recovery time
 - Less post operative pain
 - Less immune compromise

Minimally Invasive Surgery

- Minimally invasive procedures add value to the patient
- Minimally invasive approaches require development of expertise
- VATS procedures are a heterogeneous pool and not a single operation
- Majority of lobectomies are performed with thoracotomy despite thoracoscopy becoming available in 1990's

Initial consecutive experience of completely portal robotic pulmonary resection with 4 arms

Robert J. Cerfolio, MD, FACS, FCCP, Ayesha S. Bryant, MD, MSPH, Loki Skylizard, MD, and Douglas James Minnich, MD, FACS J Thorac CardiovascSurg 2011;142:740-6

- 168 Pulmonary resections
 - 148 completed robotically
 - 106 lobectomy
 - 26 wedge resection
 - 16 segmentectomy
- 318 open thoracotomy resections

UAB: Robot vs Open 2011

- Morbidity
 - 27% Robot v 38% Open
- Mortality
 - 0%Robot v 3.1% Open
- · Length of Stay
 - 2 days Robot v 4 days Open

Open, video assisted thoracic surgery, and robotic lobectomy:review of a national database Kent et al 2014 Ann Thor Surg 97:236-44

- Time Period 2008 -2010
- Surgical Approach
 - Open thoracotomy 20,238
 - VATS 12,427
 - Robotic 430
- LOS
 - Open 8.2 days
 - Robotic 5.9 days
- Mortality
 - Open 2.0%
 - Robotic 0.2%
- Morbidity
 - Open 54.1%
 - Robotic 43.8%

Ohio State Center for Robotic Surgery

- ♦ First robotic procedure: 1999
 IMA (internal mammary artery) takedown
- ◆9 Surgical specialties utilize the robotic platform
- ◆10,000th Robotic Procedure: May 2014 (est)

Challenges to the Surgeon

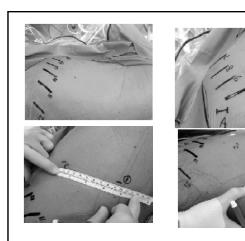
- Learning a new set of instruments
 - Same technique; different platform
- Discomfort associated with being at console not operating table
- Relying on bedside assistant for critical components of operation
- Inefficiencies introduced to operating day
- Longer procedure times
- · Additional costs

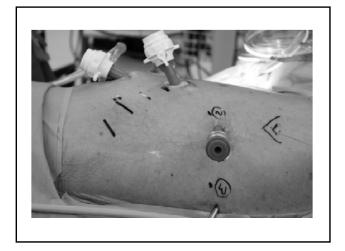
Development of the Team

- Surgical TeamSurgeon/ PA
 - Didactic videos/training
- Case observations
- Dry lab
- Cadaver lab
- Building skills in VATS and open cases
- Consistency

- Operating Room
 - Nurses/ Techs
- Case observation
- · Dry lab for docking
- Cadaver lab
- Double scrub cases
- · In-service training
- Desensitization
- Consistency

Technical Considerations

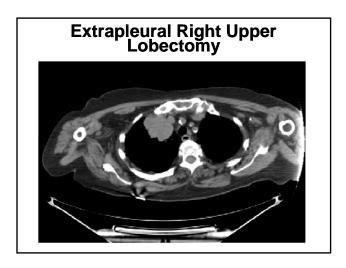

- Think low for camera port
 - 8th or 9th interspace
- Allow adequate space between ports
 - 8 10 cm
- · Keep arm ports inferior to fissures
- Place assistant port inferiorly and anteriorly
- Minimize blunt dissection
 - Utilize energy for dissection
- · Maintain dry operating field
- · Dissect artery, vein, bronchus completely

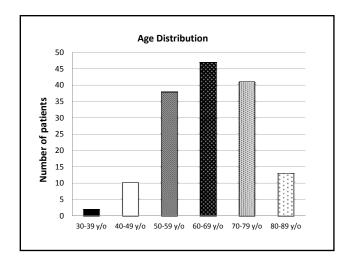

Thoracic Robotic Surgery

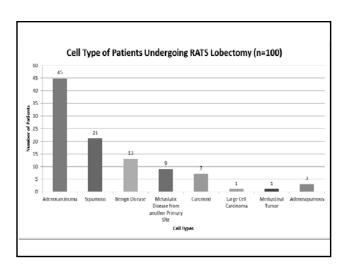
- 350 Procedures
- 205 Lobectomy
- 45 Mediastinal
- 25 Esophagectomy
- 75 Sublobar/Wedge Resection

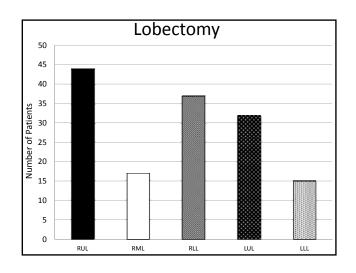
Technical Considerations

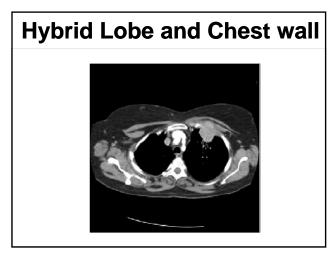
- Use anterior arm to gain control of bleeding to facilitate posterior thoracotomy
- · Use blunt retraction on lung

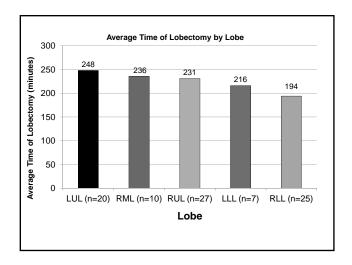


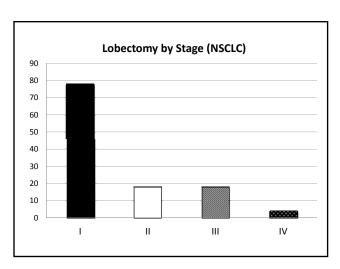

Conversions from Robotic Assisted

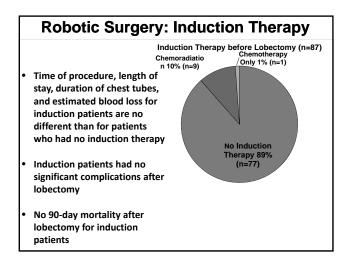

- 8 % conversion rate during lobectomy
- 50% of conversions occurred in first 35 cases

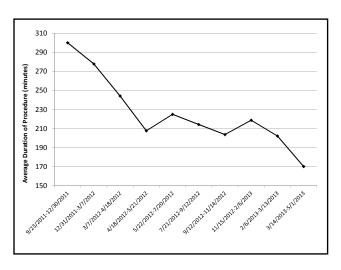


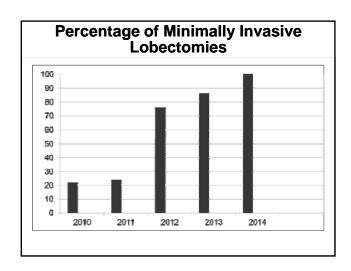


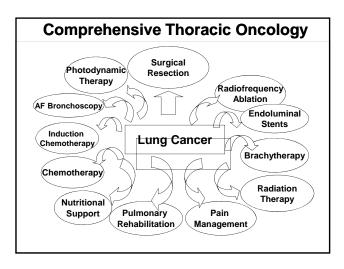











Advantages to Surgeon

- Visualization
- Range of motion
- Precision of dissection
- · Two operating hands
- Ambidextrous instrumentation
- · Same principles as open procedure
- Patient preference/ patient satisfaction

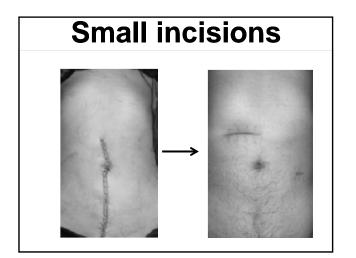
Advantages to Patient

- Smaller incisions; true port surgery
- · Less pain acutely
- Less chronic pain
- Quicker return to lifestyle
- Improved ability to tolerate adjuvant therapy
- Better oncologic outcome?

Robotic Operations for Abdominal Cancers

Carl Schmidt, MD, FACS
Associate Professor of Surgery
Division of Surgical Oncology
The Ohio State University Wexner Medical Center

Abdominal/Pelvic Cancers

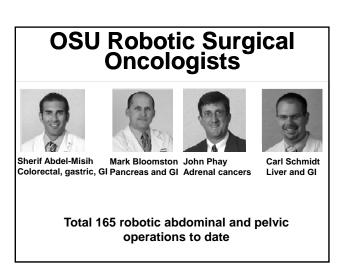

Cancer	Estimated deaths in 2014
Colorectal	50,310
Pancreas	39,590
Prostate	29,480
Liver and bile duct	23,000
Ovary	14,270
Esophagus	12,450
Bladder	11,170
Uterus	8,590
Kidney	8,900

Total - 197,760 deaths

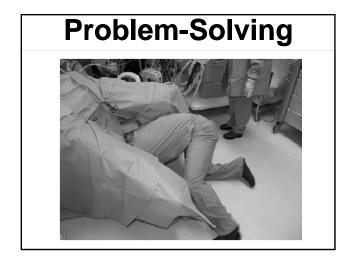
Cancer Statistics, 2014, American Cancer Society

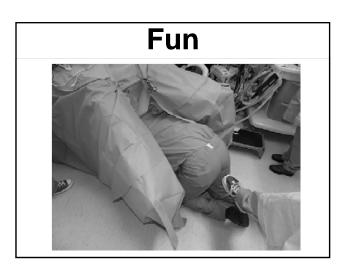
Minimally-Invasive Surgery

- Laparoscopic or robotic procedures for most abdomen/pelvis cancers
- · Benefits include
 - Small incisions
 - Less pain medication
 - Quicker return of bowel function
 - Hospital length of stay
 - Earlier return to work and usual activity

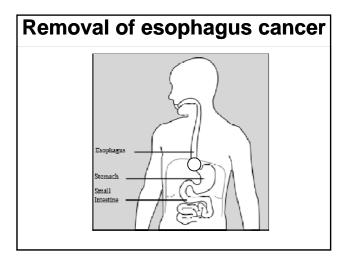


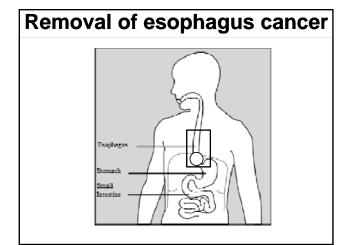
Robotic Surgery

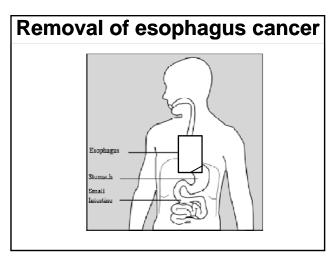

- A tool for minimally-invasive operations
- 3D binocular vision zooms in for tight spaces
- Increased degrees of freedom at wrist
- Longer OR time
- Increased cost

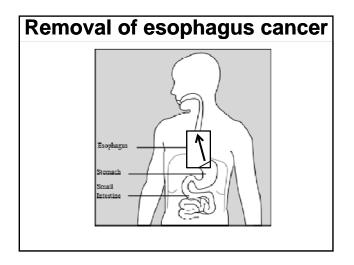

Robotics and Surgical Oncology

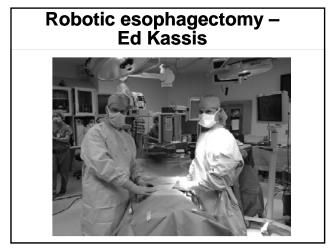
- Encouraged by experience of urologists and GYN-oncologic surgeons
- Four surgical oncologists began using the robot in 2010 – first with colorectal and adrenal cancers
- Future potential versus "falling behind"

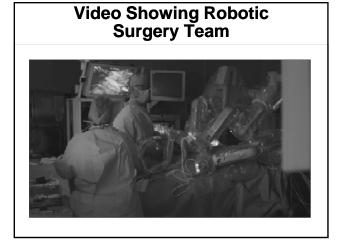







Esophagus Cancer


- Adenocarcinoma type increasing dramatically due to acid reflux and other causes
- Aggressive cancer with high rate of mortality
- Many patients are treated with surgery, radiation and chemotherapy



Robot esophagectomy at OSU

- 20 operations in first year
- 95% treated first with chemoradiation
- Two required conversion to open technique
- Two tumors were not removable
- OR time average almost 10 total hours
- Hospital stay about 8 days
- 18% leak rate no perioperative deaths

Final Thoughts

- Our outcomes after abdominal and pelvic cancer operations depend mostly on cancer stage and complications
- It will be a good day when the main concern of any cancer patient is the size of a scar
- Robotic technology is helping us do better operations but proof is required